14 April 2000 Individual 3D region-of-interest atlas of the human brain: automatic training point extraction for neural-network-based classification of brain tissue types
Author Affiliations +
Abstract
Individual region-of-interest atlas extraction consists of two main parts: T1-weighted MRI grayscale images are classified into brain tissues types (gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), scalp/bone (SB), background (BG)), followed by class image analysis to define automatically meaningful ROIs (e.g., cerebellum, cerebral lobes, etc.). The purpose of this algorithm is the automatic detection of training points for neural network-based classification of brain tissue types. One transaxial slice of the patient data set is analyzed. Background separation is done by simple region growing. A random generator extracts spatially uniformly distributed training points of class BG from that region. For WM training point extraction (TPE), the homogeneity operator is the most important. The most homogeneous voxels define the region for WM TPE. They are extracted by analyzing the cumulative histogram of the homogeneity operator response. Assuming a Gaussian gray value distribution in WM, a random number is used as a probabilistic threshold for TPE. Similarly, non-white matter and non-background regions are analyzed for GM and CSF training points. For SB TPE, the distance from the BG region is an additional feature. Simulated and real 3D MRI images are analyzed and error rates for TPE and classification calculated.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Gudrun Wagenknecht, Hans-Juergen Kaiser, Thorsten Obladen, Osama Sabri, Udalrich Buell, "Individual 3D region-of-interest atlas of the human brain: automatic training point extraction for neural-network-based classification of brain tissue types", Proc. SPIE 3962, Applications of Artificial Neural Networks in Image Processing V, (14 April 2000); doi: 10.1117/12.382908; https://doi.org/10.1117/12.382908
PROCEEDINGS
12 PAGES


SHARE
RELATED CONTENT


Back to Top