6 June 2000 Nonlinear anisotropic diffusion filters for wide range edge sharpening
Author Affiliations +
Abstract
Nonlinear anisotropic diffusion filtering is a procedure based on nonlinear evolution partial differential equations which seeks to improve images qualitatively by removing noise while preserving details and even enhancing edges. However, well known implementations are sensitive to parameters which are necessarily tuned to sharpen a narrow range of edge slopes; otherwise, edges are either blurred or staircased. In this work, nonlinear anisotropic diffusion filters have been developed which sharpen edges over a wide range of slopes and which reduce noise conservatively with dissipation purely along feature boundaries. Specifically, the range of sharpened edge slopes is widened as backward diffusion normal to level sets is balanced with forward diffusion tangent to level sets. Also, noise is reduced by selectively altering the balance toward diminishing normal backward diffusion and particularly toward total variation filtering. The theoretical motivation for the proposed filters is presented together with computational results comparing them with other nonlinear anisotropic diffusion filters on both phantom images and magnetic resonance images.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Stephen L. Keeling, Stephen L. Keeling, Rudolf Stollberger, Rudolf Stollberger, } "Nonlinear anisotropic diffusion filters for wide range edge sharpening", Proc. SPIE 3979, Medical Imaging 2000: Image Processing, (6 June 2000); doi: 10.1117/12.387640; https://doi.org/10.1117/12.387640
PROCEEDINGS
14 PAGES


SHARE
Back to Top