22 June 2000 Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization
Author Affiliations +
Abstract
Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Qiang Liu, Qiang Liu, Aditi Chattopadhyay, Aditi Chattopadhyay, } "Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization", Proc. SPIE 3985, Smart Structures and Materials 2000: Smart Structures and Integrated Systems, (22 June 2000); doi: 10.1117/12.388875; https://doi.org/10.1117/12.388875
PROCEEDINGS
11 PAGES


SHARE
Back to Top