You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 June 2000Nonlinear finite element method for piezoelectric structures made of hysteretic ferroelectric ceramics
A simple macroscopic constitutive law for ferroelectric and ferroelastic hysteresis effects of piezoceramics is presented. After summarizing the uniaxial formulation, it is generalized to a 3D tensorial formulation. This constitutive model has been implement in the public domain finite element code PSU of Stuttgart University. The fully coupled electro- mechanical boundary value problem for our hysteresis model is solved by incrementation of the loading history. In order to verify the capabilities of our tool, a multilayer like actuator geometry is analyzed. It is shown that the remanent polarization remaining after poling gives rise to a non- vanishing distribution of the electric potential even if the voltage is reduced to zero at all electrodes. Concerning the residual stresses present after poling, a tensile stress field perpendicular to the direction of the electrodes. Concerning the residual stresses present after poling, a tensile stress field perpendicular to the direction of the electrodes can be found in the passive region of the actuator where so-called poling cracks are known to occur. It is the key feature of our finite element tool that it allows to consider in structural mechanical analyses such phenomena as they are induced by the remanent hysteresis properties of piezoceramic.
Marc Kamlah andUlrich Boehle
"Nonlinear finite element method for piezoelectric structures made of hysteretic ferroelectric ceramics", Proc. SPIE 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, (14 June 2000); https://doi.org/10.1117/12.388209
The alert did not successfully save. Please try again later.
Marc Kamlah, Ulrich Boehle, "Nonlinear finite element method for piezoelectric structures made of hysteretic ferroelectric ceramics," Proc. SPIE 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, (14 June 2000); https://doi.org/10.1117/12.388209