You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 March 2000Chaos and squeezing in quantum optics
Some quantum optical models possessing a transition from regular to chaotic dynamics and influence of `quantum chaos' to squeezing are investigated. Particular cases of semiclassical dynamics of a single atom and cooperative system of these atoms with (2j + 1)--equidistant levels interacting with a quantized photon mode in an ideal cavity were considered. Corresponding equations of motion are received without the rotation-wave approximation. Chaotic behavior and squeezing degree time dependence were obtained in computer simulations for coupling constant values or order of the atomic frequency.
The alert did not successfully save. Please try again later.
Alexander V. Gorokhov, "Chaos and squeezing in quantum optics," Proc. SPIE 4002, Saratov Fall Meeting '99: Laser Physics and Spectroscopy, (20 March 2000); https://doi.org/10.1117/12.380135