You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 July 2000Constrained subpixel target detection for hyperspectral imagery
Target detection in remotely sensed images can be conducted spatially, spectrally or both. The difficulty of detecting targets in remotely sensed images with spatial image analysis arises from the fact that the ground sampling distance is generally larger than the size of the targets of interest in which case targets are embedded in a single pixel and cannot be detected spatially. Under this circumstance target detection must be carried out at subpixel level and spectral analysis offers a valuable alternative. This paper compares two constrained approaches for subpixel detection of targets in remote sensing images. One is a target abundance-constrained approach, referred to as the nonnegatively constrained least squares (NCLS) method. It is a constrained least squares linear spectral mixture analysis method which implements a nonnegatively constraint on the abundance fractions of targets of interest. A common drawback of linear spectral mixture analysis based methods is the requirement for prior knowledge of the endmembers present in an image scene. In order to mitigate this drawback, the NCLS method is extended to create an unsupervised approach, referred to as the unsupervised nonnegatively constrained least present in the image scene. The second approach is a target signature-constrained method, called the constrained energy minimization (CEM) method. It constrains the desired target signature with a specific gain while minimizing effects caused by other unknown signatures. Data from the HYperspectral Digital Imagery Collection Experiment (HYDICE) sensor are used to compare the performance of these methods.
The alert did not successfully save. Please try again later.
Chein-I Chang, Daniel C. Heinz, "Constrained subpixel target detection for hyperspectral imagery," Proc. SPIE 4048, Signal and Data Processing of Small Targets 2000, (13 July 2000); https://doi.org/10.1117/12.391995