You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 April 2000Optimized wavelet domain watermark embedding strategy using linear programming
Invisible Digital watermarks have been proposed as a method for discouraging illicit copying and distribution of copyright material. In recent years it has been recognized that embedding information in a transform domain leads to more robust watermarks. In particular, several approaches based on the wavelet transform have ben proposed to address the problem of image water marking. The advantage of the wavelet transform relative to the DFT or DCT is that it allows for localized water marking of the image. A major difficulty, however, in watermarking in any transform domain lies in the fact that constraints on the allowable distortion at any pixel are specified in the spatial domain. In order to insert an invisible watermark, the current trend has been to model the Human Visual Systems and specify a masking function which yields the allowable distortion for any pixel. This complex function combines contrast, luminance, color, texture and edges. The watermark is then inserted in the transform domain and the inverse transform computed. The watermark is finally adjusted to satisfy the constraints on the pixel distortions. However this method is highly suboptimal since it leads to irreversible losses at the embedding stage because the watermark is being adjusted in the spatial domain with no care for the consequences in the transform domain.