Paper
13 November 2000 Embedded triboluminescent structural damage sensors
Ian Sage, Lisa Humberstone, I. Oswald, Peter A. Lloyd, Grant Bourhill
Author Affiliations +
Abstract
Triboluminescent materials offer a viable route to real-time structural damage sensing. The sensors can be externally attached to the surface of metals or composites, or embedded within composites. In-situ monitoring of structural damage in composites is particularly relevant since severe internal damage can exist with little indication of this damage on the composite surface. The main issue related to embedding triboluminescent sensors within composites is how to access efficiently the optical signal generated upon structural damage and how to guide efficiently this optical damage signal to a remote detector. Earlier work relied on side-coupling of the triboluminescent light into a curved conventional silica fibre and/or end-coupling into the silica fibre, if the damage to the host structure had also broken the fibre. Both these light collection methods are, of course, inefficient and resulted in an optical damage signal with a very poor S/N ratio. By using novel photoluminescent polymeric and silica fibres, we have shown that it is possible to efficiently capture and guide the optical damage signal from an embedded triboluminescent sensor to a remote detector. These fibres resulted in a signal with a S/N ratio that was orders of magnitude larger than that achieved using the conventional silica fibre. Futhermore, we have shown that the light collection/guiding technique can be used effectively with triboluminescent sensors embedded within black CFRP composites. Finally, we have demonstrated that for resins and GFRP composites, triboluminescent sensors act as truly global damage sensors, wehreas for CFRP composites, the damage sensing is localised to areas close to the embedded photoluminescent fibre.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ian Sage, Lisa Humberstone, I. Oswald, Peter A. Lloyd, and Grant Bourhill "Embedded triboluminescent structural damage sensors", Proc. SPIE 4104, Organic Photorefractives, Photoreceptors, and Nanocomposites, (13 November 2000); https://doi.org/10.1117/12.406468
Lens.org Logo
CITATIONS
Cited by 15 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Composites

Silica

Signal detection

Optical damage

Polymers

Remote sensing

Back to Top