Translator Disclaimer
4 December 2000 Multiwavelet characterization of function spaces adapted to the Navier-Stokes equations
Author Affiliations +
Abstract
We use wavelets based ona modification of the Geronimo- Hardin-Massopust construction to define localized extension/restriction operators form half-spaces to their full spaces/boundaries respectively. These operations are continuous in Sobolev and Morrey space norms. We also prove estimates for multiresolution projections of pointwise products of functions in these spaces. These are two of the key steps in extending results of Federbush and of Cannone and Meyer concerning solutions of Navier-Stokes with initial data in Sobolev and Morrey spaces to the case of half spaces and, ultimately, to more general domains with boundary.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Joseph D. Lakey, S. Obeidat, and M. Cristina Pereyra "Multiwavelet characterization of function spaces adapted to the Navier-Stokes equations", Proc. SPIE 4119, Wavelet Applications in Signal and Image Processing VIII, (4 December 2000); https://doi.org/10.1117/12.408623
PROCEEDINGS
12 PAGES


SHARE
Advertisement
Advertisement
Back to Top