You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 November 2000Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source
We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.
The alert did not successfully save. Please try again later.
Jean-Pierre Girardeau-Montaut, Bela Kiraly, Claire Girardeau-Montaut, "Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source," Proc. SPIE 4144, Advances in Laboratory-based X-Ray Sources and Optics, (2 November 2000); https://doi.org/10.1117/12.405900