16 October 2000 RoBlock: a prototype autonomous manufacturing cell
Author Affiliations +
Proceedings Volume 4196, Sensor Fusion and Decentralized Control in Robotic Systems III; (2000) https://doi.org/10.1117/12.403728
Event: Intelligent Systems and Smart Manufacturing, 2000, Boston, MA, United States
Abstract
RoBlock is the first phase of an internally financed project at the Institute aimed at building a system in which two industrial robots suspended from a gantry, as shown below, cooperate to perform a task specified by an external user, in this case, assembling an unstructured collection of colored wooden blocks into a specified 3D pattern. The blocks are identified and localized using computer vision and grasped with a suction cup mechanism. Future phases of the project will involve other processes such as grasping and lifting, as well as other types of robot such as autonomous vehicles or variable geometry trusses. Innovative features of the control software system include: The use of an advanced trajectory planning system which ensures collision avoidance based on a generalization of the method of artificial potential fields, the use of a generic model-based controller which learns the values of parameters, including static and kinetic friction, of a detailed mechanical model of itself by comparing actual with planned movements, the use of fast, flexible, and robust pattern recognition and 3D-interpretation strategies, integration of trajectory planning and control with the sensor systems in a distributed Java application running on a network of PC's attached to the individual physical components. In designing this first stage, the aim was to build in the minimum complexity necessary to make the system non-trivially autonomous and to minimize the technological risks. The aims of this project, which is planned to be operational during 2000, are as follows: To provide a platform for carrying out experimental research in multi-agent systems and autonomous manufacturing systems, to test the interdisciplinary cooperation architecture of the Maersk Institute, in which researchers in the fields of applied mathematics (modeling the physical world), software engineering (modeling the system) and sensor/actuator technology (relating the virtual and real worlds) could collaborate with systems integrators to construct intelligent, autonomous systems, and to provide a showpiece demonstrator in the entrance hall of the Institute's new building.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Lars K. Baekdal, Lars K. Baekdal, Ivar Balslev, Ivar Balslev, Rene Dencker Eriksen, Rene Dencker Eriksen, Soren Peder Jensen, Soren Peder Jensen, Bo N. Jorgensen, Bo N. Jorgensen, Brian Kirstein, Brian Kirstein, Bent B. Kristensen, Bent B. Kristensen, Martin M. Olsen, Martin M. Olsen, John W. Perram, John W. Perram, Henrik G. Petersen, Henrik G. Petersen, Morten Lind Petersen, Morten Lind Petersen, Peter T. Ruhoff, Peter T. Ruhoff, Carl Erik Skjolstrup, Carl Erik Skjolstrup, Anders S. Sorensen, Anders S. Sorensen, Jeroen M. Wagenaar, Jeroen M. Wagenaar, } "RoBlock: a prototype autonomous manufacturing cell", Proc. SPIE 4196, Sensor Fusion and Decentralized Control in Robotic Systems III, (16 October 2000); doi: 10.1117/12.403728; https://doi.org/10.1117/12.403728
PROCEEDINGS
8 PAGES


SHARE
RELATED CONTENT


Back to Top