You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 April 2001Dielectric properties of PLZT prepared by three sol-gel methods
Lead lanthanum zirconate titanate (PLZT) powders were prepared by three different sol-gel methods. In one process, the precursor materials used were lead hydroxide, lanthanum nitrate hexahydrate, zirconium tetra-n-butoxide, and titanium tetraisopropoxide along with 2-methoxyethanol as a solvent. An amount of distilled water equivalent to the total molar concentration of Pb, Ti, and Zr was added to the above solution. In a second process, the precursor materials used were lead acetate, lanthanum nitrate hexahydrate, zirconium tetra-n-butoxide, and titanium tetraisopropoxide along with 2- methoxyethanol as a solvent. An amount of distilled water equivalent to the total molar concentration of Pb, Ti, and Zr was added to the above solution. In a third process, the precursor materials used were lead acetate, lanthanum nitrate hexahydrate, zirconyl nitrate, and titanium tetra-n-butoxide. Distilled water and acetic acid were used as solvents. Triethyleneglycol or diethanolamine was used in each of the above processes as a chemical additive to modify the hydrolysis and condensation of the solution. Thermal gravimetric-differential thermal analysis was used to study the weight changes of the dried gels as a function of annealing temperature. Dried samples were heated for 1 h in the range of 673 to 1073 K in air atmosphere. The crystalline phases of calcined PLZT powders were identified by X-ray diffraction analysis. The calcined powder was pressed by CIP at 100 MPa. The samples were sintered at 1173 K, 1273 K, and 1323 K and their relative dielectric constants were measured.