Paper
23 May 2001 Optical reflection tomography along the geometrical thickness
Author Affiliations +
Abstract
Very recently, we proposed and demonstrated a novel optical reflection tomography along the geometrical thickness, reflecting a real cross-sectional structure of an object. This technique is based on simultaneous measurement of refractive index n and thickness t of a sample using the combination of a low coherence interferometer and confocal optics. The interferometer provides optical coherence tomography (OCT) of the dimension of the optical thickness (=n x t) along the optical axis, while the confocal optics gives us another type of reflection tomography, having the thickness dimension of nearly t/n along the optical axis. This tomography can be called confocal reflection tomography (CRT) and has not yet been demonstrated, to our knowledge. Simple image processing of OCT and CRT results in desired reflection tomographic image, showing 2D refractive index distribution along the geometrical thickness. In this paper, we present the validity of our proposed method using the concave glass plate as well as the application for in vivo measurement of biological tissue.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Masato Ohmi, Koji Yoden, and Masamitsu Haruna "Optical reflection tomography along the geometrical thickness", Proc. SPIE 4251, Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, (23 May 2001); https://doi.org/10.1117/12.427874
Lens.org Logo
CITATIONS
Cited by 7 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical coherence tomography

CRTs

Confocal optics

Tissue optics

Ultrasound reflection tomography

Tomography

Geometrical optics

Back to Top