You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 May 2001Microfluidic disposables for cellular and chemical detection: CFD model results and fluidic verification experiments
Micronics has developed a wide variety of microfluidic devices and integrated systems for clinical diagnostics and life sciences applications. They fall into two general classes: machine-controlled disposable cartridges, and passive self-contained disposable cards. They include particle separators, flow cytometers, valves, detection channels, mixers, and diluters. Current applications for these devices include a hematology analyzer, stand-alone blood plasma separators, and a variety of chemical and biological assays. In this paper, we will focus on microfluidic structures for chemical and cellular analysis. Experimental data as well as the results of fluid modeling will be shown.
The alert did not successfully save. Please try again later.
Ron L. Bardell, Bernhard H. Weigl, Natasa Kesler, Thomas H. Schulte, Jon W. Hayenga, Fred Battrell, "Microfluidic disposables for cellular and chemical detection: CFD model results and fluidic verification experiments," Proc. SPIE 4265, Biomedical Instrumentation Based on Micro- and Nanotechnology, (21 May 2001); https://doi.org/10.1117/12.427961