You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 June 2001High-resolution IC inspection technique
We demonstrate a through the substrate, numerical aperture increasing lens (NAIL) technique for high-resolution inspection of silicon devices. We experimentally demonstrate a resolution of 0.2 micrometers , with the ultimate diffraction limit of 0.14 micrometers . Absorption limits inspection in silicon to wavelengths greater than 1 micrometers , placing an ultimate limit of 0.5 micrometers resolution on standard subsurface microscopy techniques. Our numerical aperture increasing lens reduces this limit to 0.14 micrometers , a significant improvement for device visual inspection (patent pending). The NAIL technique yields a resolution improvement over standard optical microscopy of at least a factor of n, the refractive index of the substrate material, and up to a factor of n 2. In silicon, this constitutes a resolution improvement between 3.6 and 13. This is accomplished by increasing the numerical aperture of the imaging system, without introducing any spherical aberration to the collected light. A specialized lens made of the same material as the substrate is placed on the back surface of the substrate. The convex surface of this lens is spherical with a radius of curvature, R. The vertical thickness of the lens, D, should be selected according to D equals $ (1 + 1/n)-X and the substrate thickness X.
The alert did not successfully save. Please try again later.
Stephen Bradley Ippolito, Anna K. Swan, Bennett B. Goldberg, M. Selim Unlu, "High-resolution IC inspection technique," Proc. SPIE 4275, Metrology-based Control for Micro-Manufacturing, (5 June 2001); https://doi.org/10.1117/12.429355