Translator Disclaimer
6 August 2001 Development of conductive FRP containing carbon phase for self-diagnosis structures
Author Affiliations +
The electrical properties of fiber reinforced plastics (FRP) have been investigated in order to develop structural materials with a damage diagnosis function. Electrical conductivity was achieved by adding carbon particles or carbon fiber as a conductive phase into the FRP. The composites containing carbon particles connected by a percolation structure were found to have advantages in terms of response of conductivity to small strains and the size of the detectable strain range, compared to composites containing carbon fiber. A part of the resistance change in the elongated composites containing carbon particles remained after unloading despite deformation being predominantly elastic. This residual resistance was found to depend largely on morphology of the carbon particles and orientation of the glass fiber. A distinct residual resistance was observed in composites containing spherical carbon particles (carbon black) and glass fibers aligned at an angle of 0 degrees with respect to the tensile direction. Electrical time domain reflectometry (ETDR) was used to locate the damaged region in multilayer composites containing CFRP and GFRP. The position of local damage in the multilayer composites was clearly located to a precision of within 20 mm.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yoshiki Okuhara, Soon-Gi Shin, Hideaki Matsubara, Hiroaki Yanagida, and Nobuo Takeda "Development of conductive FRP containing carbon phase for self-diagnosis structures", Proc. SPIE 4328, Smart Structures and Materials 2001: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, (6 August 2001);

Back to Top