You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 September 2001Impact of flare on CD variation for 248-nm and 193-nm lithography systems
All optical imaging systems have some amount of stray light, or flare, that detracts from system performance, critical dimension (CD) control, and process latitude. The effects of flare increase when multiple exposure processes, such as complementary phase shift, are used since this doubles the amount of exposure energy going through the optics. Flare was characterized on several modern KrF and ArF exposure tools using a direct method of measurement. Flare is determined by measuring the reduction in the size of a 160 nm line as it is subjected to increasing dose from a second 'flare' exposure. The amount of flare is determined using regression between experimental and modeled data. Lithography modeling was used to quantify the amount of flare responsible for CD variation. This method allows evaluation of CD control degradation on actual features that are sized close to production feature size. The effects of substrate reflectance and mask loading were also studied. The results were compared to a published large pad flare measurement technique in common use.
The alert did not successfully save. Please try again later.
Anatoly Bourov, Lloyd C. Litt, Lena Zavyalova, "Impact of flare on CD variation for 248-nm and 193-nm lithography systems," Proc. SPIE 4346, Optical Microlithography XIV, (14 September 2001); https://doi.org/10.1117/12.435677