Translator Disclaimer
20 September 2001 Communal learning within a distributed robotic control system
Author Affiliations +
It is accepted that the ability to learn and adapt is key to prosperity and survival in both individuals and societies. The same is true of populations of robots. Those robots within a population that are able to learn will outperform, survive longer and perhaps exploit their non-learning co- workers. This paper describes the ongoing results of Communal Learning in the Cognitive Colonies Project (CMU/Robotics and DRES), funded jointly by DARPA ITO- Software for Distributed Robotics and DRDC-DRES. Discussed will be how communal learning fits into the free market architecture for distributed control. Techniques for representing experiences, learned behaviors, maps and computational resources as commodities within the market economy will be presented. Once in a commodity structure, the cycle of speculate, act, receive profits or sustain losses and then learn of the market economy. This allows successful control strategies to emerge and the individuals who discovered them to become established as successful. This paper will discuss: learning to predict costs and make better deals, learning transition confidences, learning causes of death, learning with robot sacrifice and learning model parameters.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Bruce Leonard Digney "Communal learning within a distributed robotic control system", Proc. SPIE 4364, Unmanned Ground Vehicle Technology III, (20 September 2001);


An architecture for online semantic labeling on UGVs
Proceedings of SPIE (May 16 2013)
Using a virtual world for robot planning
Proceedings of SPIE (May 10 2012)
Robotic concepts for urban operations
Proceedings of SPIE (July 16 2002)
Sensor Robotics In The National Bureau Of Standards
Proceedings of SPIE (May 22 1983)

Back to Top