Paper
27 August 2001 Imaging algorithm for steadily flying and maneuvering big targets
Mengdao Xing, Zheng Bao
Author Affiliations +
Abstract
Usually inverse synthetic aperture radar (ISAR) imaging is for small aircraft, with long range, moreover the coherent integration angle is small, that is the target's wavenumber spectrum support region can be regard as a rectangle, Range-Doppler(RD) algorithm or Range-Instantaneous-Doppler (RID) algorithm are employed for image reconstruction after translational motion compensation (TMC), which includes envelope alignment (such as envelope correlation algorithm, minimum entropy algorithm) and autofocus (such as single PPP algorithm, multiple PPP algorithm, PGA, weighted least square algorithm). But migration through resolution cell (MTRC) is not considered after TMC, in fact, the scatterers around the target usually take place MTRC if the size of target is large. In the paper, we first align and focus the high resolution radar target echoes according target center, then we do time scale transform in target's wavenumber domain, that is Soumekh proposed 'keystone' interpolation to compensate MTRC (which can also be realized rapidly by DFT-IFFT or SFT-IFFT in azimuth direction), after range compression (range IFFT), for steadily flying target, target image can be obtained only after azimuth compression (that is FFT in azimuth direction), for maneuvering target, time-frequency analysis must be taken for every range cell, and the existing instantaneous imaging algorithms (such as joint time-frequency distribution algorithm, Radon-Wigner algorithm) are also effective to obtain RID images. This paper gives the ISAR imaging algorithm flow diagram to obtain images from raw data of steadily flying and maneuvering big targets, and simulate data and real data prove that algorithm flow is effective.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mengdao Xing and Zheng Bao "Imaging algorithm for steadily flying and maneuvering big targets", Proc. SPIE 4382, Algorithms for Synthetic Aperture Radar Imagery VIII, (27 August 2001); https://doi.org/10.1117/12.438209
Lens.org Logo
CITATIONS
Cited by 7 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Detection and tracking algorithms

Image compression

Radar

Reconstruction algorithms

Time-frequency analysis

Synthetic aperture radar

Radar imaging

Back to Top