Paper
17 January 2002 Possibility of ozone depletion monitoring in conditions of opaque atmosphere using D-dosimeter
Author Affiliations +
Abstract
Variations of solar ultraviolet (UV) radiation by clouds and aerosols that have a comparable effect on UVB (280-315 nm) caused by variations in stratospheric ozone hinder accurate detecting mid-latitude UVB trends. In this connection it is desirable to use a UVB dosimeter that has at least two independent parameters, namely, a parameter responding to the integral intensity of UVB radiation and an additional one exclusively sensitive to the short wavelength variations in solar UV spectrum related to ozone depletion. The desired spectral selectivity is intrinsic in D-dosimeter that was recently introduced for an in situ monitoring of vitamin D synthetic capacity of solar UVB radiation. D-dosimeter is based on an in vitro model of vitamin D synthesis. The photoreaction rate (decay of provitamin D and formation of previtamin D) depends upon the integral UV intensity whereas maximum achievable concentration of previtamin D is solely dictated by the spectral position of the short-wave edge of solar spectrum. This makes it possible to reveal ozone depletion under conditions of opaque atmosphere when clouds and aerosols attenuate solar UV flux like a gray filter.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Irina P. Terenetskaya "Possibility of ozone depletion monitoring in conditions of opaque atmosphere using D-dosimeter", Proc. SPIE 4482, Ultraviolet Ground- and Space-based Measurements, Models, and Effects, (17 January 2002); https://doi.org/10.1117/12.452932
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Ultraviolet radiation

Ozone

Solar radiation

Absorption

Aerosols

Atmospheric modeling

Biological research

Back to Top