You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 September 2001Improved pulse-coupled neural network for target segmentation in infrared images
This paper presents a new image segmentation algorithm based on the pulse coupled neural network (PCNN) and histogram method for infrared images. The proposed algorithm abandons entirely the mechanism of the time exponential decaying function and uses the results of the gray-level histogram analysis as the interior thresholds of PCNN, meanwhile, it keeps the advantage of briding small spatial gaps and minor intensity variations. Experiment results demonstrate that the proposed algorithm can get more complete region and edge information in infrared images. It is also of much lower complexity and of high speed than the original one.