You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 October 2001Numerical analysis techniques for wideband amplifiers
Increasing demands on the high capacity wavelength division multiplexed (WDM) transmission system now require newly developed transmission windows beyond the gain bandwidth supported by erbium-doped fiber amplifiers (EDFA). With the intensive development efforts on new rare-earth dopants and fiber nonlinearity (Raman process) for fast few years, wideband optical amplifiers now can support easily over 4-5 fold wider gain bandwidth than it was formerly possible with the conventional EDFAs. Of various breeds for this application, there exist three distinct approaches near 150nm band, accessible in the commercial market. These include: Thulium-doped fluoride fiber amplifiers (TDFA) for S+band (1450-1480 nm) and S band (1480-1530 nm), EDFAs for C band (1530-1560nm) and L band (1570-1610nm) and L band (1570-1610nm), Raman amplifiers with 100 nm's of gain bandwidth (with flexible location from S+ to L Band), and hybrid amplifiers with serial/parallel combinations of above techniques. Even though there have been much increased experimental reports for all of these amplifiers, the complexity of the amplification dynamics from the number of involving energy levels and difficulty in measuring experimental parameters make it harder than ever to predict the performance of wideband amplifiers in general. This lack of serious study on the analytic or numerical analysis on wideband amplifiers could cause the future impairments for the prediction and estimation of the amplifier performances for different applications, restricting the successful deployment of wideband amplifier based transmission systems. In this paper, we present the numerical model and analysis techniques for wideband amplifiers (C/L band EDFA, Raman amplifier, and TDFA),along with their application examples.
The alert did not successfully save. Please try again later.
Namkyoo Park, Wonjae Lee, Bumki Min, Jae-Hyeung Park, "Numerical analysis techniques for wideband amplifiers," Proc. SPIE 4604, Fiber Optic Components, Subsystems, and Systems for Telecommunications, (11 October 2001); https://doi.org/10.1117/12.444611