27 June 2002 Corneal injury from 1318-nm single laser pulses
Author Affiliations +
Proceedings Volume 4617, Laser Tissue Interaction XIII: Photochemical, Photothermal, and Photomechanical; (2002) https://doi.org/10.1117/12.472542
Event: International Symposium on Biomedical Optics, 2002, San Jose, CA, United States
Abstract
Threshold, median effective dose, and the mechanism of laser-tissue interaction are not well defined at the 1318-nm wavelength for human corneal exposures. The goals of this research effort are to identify at-risk groups, characterize the lesions imposed, and establish the ED50 for single pulse 1318-nm laser exposures on the cornea. A Neodymium: Yttrium Aluminum Garnet (Nd:YAG) laser was used to deliver 1318-nm wavelength pulses to the corneas of ten female Dutch Belted rabbits (Oryctolagus cuniculus). Single pulses of 0.5-ms duration and radiant beam energy ranging from 116 to 2250 joules/per square centimeter (J/cm2) were used. Exposure sites were clinically evaluated acutely, one hour and twenty-four hours post-exposure for the presence of a lesion. Results from the twenty-four hour evaluation were used to determine the ED50. Grossly, the lesions appeared as small, circular, well-demarcated, white, opaque lesions. Histologically, the lesions appeared as conical shaped coagulative necrosis with the base of the lesion at the epithelial surface of the cornea and extending to the apex at the endothelial border of the cornea. The ED50 for 1318-nm exposures to the rabbit cornea was determined to be 383 J/cm2 for a 0.1-mm spot size as measured at 1/e2.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
William P. Roach, Bryan K. Ketzenberger, Margaret B. Burton, Thomas E. Johnson, "Corneal injury from 1318-nm single laser pulses", Proc. SPIE 4617, Laser Tissue Interaction XIII: Photochemical, Photothermal, and Photomechanical, (27 June 2002); doi: 10.1117/12.472542; https://doi.org/10.1117/12.472542
PROCEEDINGS
10 PAGES


SHARE
Back to Top