You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 May 2002Improving both imaging speed and spatial resolution in MR-guided neurosurgery
A robust near real-time MRI based surgical guidance scheme has been developed and used in neurosurgical procedure performed in our combined 1.5 Tesla MR operating room. Because of the increased susceptibility difference in the area of surgical site during surgery, the preferred real- time imaging technique is a single shot imaging sequence based on the concept of the half acquisition with turbo spin echoes (HASTE). In order to maintain sufficient spatial resolution for visualizing the surgical devices, such as a biopsy needle and catheter, we used focused field of view (FOV) in the phase-encoding (PE) direction coupled with an out-volume signal suppression (OVS) technique. The key concept of the method is to minimize the total number of the required phase encoding steps and the effective echo time (TE) as well as the longest TE for the high spatial encoding step. The concept has been first demonstrated with a phantom experiment, which showed when the water was doped with Gd- DTPA to match the relaxation rates of the brain tissue there was a significant spatial blurring primarily along the phase encoding direction if the conventional HASTE technique, and the new scheme indeed minimized the spatial blur in the resulting image and improved the needle visualization as anticipated. Using the new scheme in a typical MR-guided neurobiopsy procedure, the brain biopsy needle was easily seen against the tissue background with minimal blurring due the inevitable T2 signal decay even when the PE direction was set parallel to the needle axis. This MR based guidance technique has practically allowed neurosurgeons to visualize the biopsy needle and to monitor its insertion with a better certainty at near real-time pace.
The alert did not successfully save. Please try again later.
Haiying Liu, Walter A. Hall, Charles L. Truwit, "Improving both imaging speed and spatial resolution in MR-guided neurosurgery," Proc. SPIE 4681, Medical Imaging 2002: Visualization, Image-Guided Procedures, and Display, (17 May 2002); https://doi.org/10.1117/12.466922