3 May 2002 Compton scatter in frequency space: a theoretical study
Author Affiliations +
Abstract
For x-ray detectors, Compton interactions deposit photon energies along the paths of recoil electrons, which are not isotropic about the primary interaction sites. Light from each interacting x-ray is only generated near the path of a recoil electron. In this study, Compton scatter is modeled as an input-labeled cascade of the amplification and scattering processes to describe the transfer relationship of signal and noise in frequency space. The output of the model is the spatial distribution of secondary quanta generated by Compton recoil electrons. We determine the spatial dependence and statistical correlation of secondaries from the initial energy of the recoil electron and its range, resulting in the 'Compton' modulation transfer function (MTF) and noise power spectrum (NPS), respectively. Then the 'Compton' MTF and NPS are used to calculate the 'Compton' detective quantum efficiency (DQE). The probability density function of scattering angle of Compton recoil electron is developed using the Klein-Nishina coefficients. Results are applied to the description of a portal imaging system at 6 approximately MV where non-Compton interactions can be ignored. The MTF results are compared with a Monte Carlo calculation. This is the first model of how Compton interactions in the metal-plate/phosphor combination degrade image quality in terms of signal and noise. It is shown that Compton MTF depends on energy of x-ray photon in a complex way, and Compton scatter imposes a fundamental limitation on both the MTF and DQE of x-ray imaging system.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jingwu Yao, Jingwu Yao, Ian A. Cunningham, Ian A. Cunningham, } "Compton scatter in frequency space: a theoretical study", Proc. SPIE 4682, Medical Imaging 2002: Physics of Medical Imaging, (3 May 2002); doi: 10.1117/12.465592; https://doi.org/10.1117/12.465592
PROCEEDINGS
12 PAGES


SHARE
Back to Top