Translator Disclaimer
Paper
24 April 2002 Image segmentation approach to extract colon lumen through colonic material tagging and hidden Markov random field model for virtual colonoscopy
Author Affiliations +
Abstract
Virtual colonoscopy provides a safe, minimal-invasive approach to detect colonic polyps using medical imaging and computer graphics technologies. Residual stool and fluid are problematic for optimal viewing of the colonic mucosa. Electronic cleansing techniques combining bowel preparation, oral contrast agents, and image segmentation were developed to extract the colon lumen from computed tomography (CT) images of the colon. In this paper, we present a new electronic colon cleansing technology, which employs a hidden Markov random filed (MRF) model to integrate the neighborhood information for overcoming the non-uniformity problems within the tagged stool/fluid region. Prior to obtaining CT images, the patient undergoes a bowel preparation. A statistical method for maximum a posterior probability (MAP) was developed to identify the enhanced regions of residual stool/fluid. The method utilizes a hidden MRF Gibbs model to integrate the spatial information into the Expectation Maximization (EM) model-fitting MAP algorithm. The algorithm estimates the model parameters and segments the voxels iteratively in an interleaved manner, converging to a solution where the model parameters and voxel labels are stabilized within a specified criterion. Experimental results are promising.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Lihong Li, Dongqing Chen, Sarang Lakare, Kevin Kreeger, Ingmar Bitter, Arie E. Kaufman, Mark R. Wax, Petar M. Djuric, and Zhengrong Liang "Image segmentation approach to extract colon lumen through colonic material tagging and hidden Markov random field model for virtual colonoscopy", Proc. SPIE 4683, Medical Imaging 2002: Physiology and Function from Multidimensional Images, (24 April 2002); https://doi.org/10.1117/12.463607
PROCEEDINGS
6 PAGES


SHARE
Advertisement
Advertisement
Back to Top