You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 May 2002Separation of malignant and benign masses using maximum-likelihood modeling and neural networks
This study attempted to accurately segment the masses and distinguish malignant from benign tumors. The masses were segmented using a technique that combines pixel aggregation with maximum likelihood analysis. We found that the segmentation method can delineate the tumor body as well as tumor peripheral regions covering typical mass boundaries and some spiculation patterns. We have developed a Multiple Circular Path Convolution Neural Network (MCPCNN) to analyze a set of mass intensity, shape, and texture features for determination of the tumors as malignant or benign. The features were also fed into a conventional neural network for comparison. We also used values obtained from the maximum likelihood values as inputs into a conventional backpropagation neural network. We have tested these methods on 51 mammograms using a grouped Jackknife experiment incorporated with the ROC method. Tumor sizes ranged from 6mm to 3cm. The conventional neural network whose inputs were image features achieved an Az of 0.66. However the MCPCNN achieved an Az value of 0.71. The conventional neural network whose inputs were maximum likelihood values achieved an Az value of 0.84. In addition, the maximum likelihood segmentation method can identify the mass body and boundary regions, which is essential to the analysis of mammographic masses.
The alert did not successfully save. Please try again later.
Lisa M. Kinnard, Shih-Chung Benedict Lo, Paul C. Wang, Matthew T. Freedman M.D., Mohammed F. Chouikha, "Separation of malignant and benign masses using maximum-likelihood modeling and neural networks," Proc. SPIE 4684, Medical Imaging 2002: Image Processing, (9 May 2002); https://doi.org/10.1117/12.467216