Paper
30 July 2002 Double-exposure strategy using OPC and simulation and the performance on wafer with sub-0.10-μm design rule in ArF lithography
Author Affiliations +
Abstract
As the pattern size becomes smaller, double or multi exposure is required unless the epochal solutions for overcoming the limits of present lithography system do appear or are discovered. ArF DET (double exposure technology) strategy based on manual OPC with in-house simulation tool, HOST (Hynix OPC simulation tool), is suggested as a possible exposure method to extend the limitation of current lithography. HOST requires no additional procedures and separate layout optimizations of each region in terms of OPC are enough. Furthermore, it is possible to change illumination condition of each region and the overlap between two regions with ease. The results from the simulation are pattern size and profile of each condition according to the defous and misregistration. 0.63 NA ArF Scanner and Clariant resist is used for wafer process. The resist was coated on Clariant organic BARC using 0.24 um thickness. Dipole illumination for cell region and annular illumination for peripheral region are used. Cell region contains 0.20 um pitch duty pattern and peripheral region 0.24 um pitch duty pattern. The boundary of two regions is investigated in view of validity of stitching itself. The layout of reticles used as the cell and peripheral region are optimized by OPC, respectively and then, additional OPC was treated to the boundary, i.e., stitching area to compensate the cross term of the boundary caused by separate and independent optimization with OPC in the cell and the peripheral regime. The final patterns were acquired by defining the cell at first and the peripheral region secondly with different defocus and registration in respect to the cell. The actual data on wafer are presented according to defocus and one region's overlay offset relatively to the other region. And the outstanding matching between simulation results and in-line data are shown. Lithography process window for stable patterning is thoroughly investigated in view of depth of focus, energy latitude, registration between two stitched regions and stitching itself in the boundary. It is found from the experiment that total DOF of DE (double exposure) is 0.5 um and the total EL of DE is 10.0% in this paper. At present, it is very difficult to ensure stable process margin for the sub-0.10 um patterning. But there is a promising technology called stitching with special optimization. In addition, this technology will be nominated as an eternal candidate process whenever our lithography is in the adversity at the limits of his days.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Se-Young Oh, Wan-Ho Kim, Hyoung-Soon Yune, Hee-Bom Kim, Seo-Min Kim, Chang-Nam Ahn, and Ki-Soo Shin "Double-exposure strategy using OPC and simulation and the performance on wafer with sub-0.10-μm design rule in ArF lithography", Proc. SPIE 4691, Optical Microlithography XV, (30 July 2002); https://doi.org/10.1117/12.474541
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical proximity correction

Lithography

Semiconducting wafers

Double patterning technology

Optical lithography

Reticles

Device simulation

RELATED CONTENT

Evaluation of the dual-exposure technique
Proceedings of SPIE (August 22 2001)
Double patterning study with inverse lithography
Proceedings of SPIE (March 26 2008)
Feasibility studies of source and mask optimization
Proceedings of SPIE (December 10 2009)
Trench warfare!: fitting photons for fine-feature fabrication
Proceedings of SPIE (September 14 2001)

Back to Top