You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 July 2002Novel strategy for wafer-induced shift (WIS)
Alignment error that originates in the actual wafer process is one of the factors that deteriorates total overlay accuracy. This error is known as wafer induced shift (WIS). WIS occurs through a change of alignment mark topography during the actual wafer processing. To reduce this error, we propose a tool that will simulate an alignment offset generated by WIS. We have called this tool the Alignment Offset Analyzer. The Alignment Offset Analyzer consists of a profiler for measuring the alignment mark topography and a simulator that simulates the alignment offset. By using the Alignment Offset Analyzer, we simulate the alignment signals from a Tungsten chemical mechanical polishing (CMP) wafer. The simulated alignment signals have an asymmetric shape due to the wafer processing. With these signals, the alignment offset caused by WIS can be estimated prior to the exposure sequence.