Measurement represents one of the oldest methods used by human beings to better understand and control the world. Many measurement systems are primarily physical sensors, which measure time, temperature, weight, distance, and various other physical parameters. The need for cheaper, faster, and more accurate meansurements has been a driving force for the development of new systems and technologies for measurements of materials, both chemical and biological. In fact, chemical and biological sensors (or biosensors) are the evolved products of physical measurement technologies. Chemical sensors are measurement devices that convert a chemical or physical change of a specific analyte into a measurable signal, whose magnitude is normally proportional to the concentration of the analyte. On the other hand, biosensors are a subset of chemical sensors that employ a biological sensing element connected to a transducer to recognize the physiochemical change and to produce the measurable signal from particular analytes, which are not necessary to be biological materials themselves, although sometimes they are. Depending on the basis of the transduction principle, chemical and biological sensors can be classified into three major classes with different transducers: sensors with electrical transducers, sensors with optical transducers, and sensors with other transducers (e.g. mass change). The unique properties of carbon nanotubes have led to their use in areas as diverse as sensors, actuators, field-emitting flat panel displays, energy and gas storages (Dai and Mau, 2001). As we shall see below, the principles for carbon nanotube sensors to detect the nature of gases and to determine their concentrations are based on change in electrical properties induced by charge transfer with the gas molecules (e.g. O2, H2, CO2) or in mass due to physical adsorption. This article provides a status report on the research and development of carbon nanotube sensors.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Liming Dai, Liming Dai, } "Carbon nanotube sensors", Proc. SPIE 4695, Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), (11 July 2002); doi: 10.1117/12.475169; https://doi.org/10.1117/12.475169

Back to Top