You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 July 2002Development of a MEMS-rate sensor with PZT actuation and sensing
This paper relates to the development of a novel rate sensor for a wide range of potential applications in the automotive field, amongst others. The sensor is based on the dynamic behavior of an active, vibrating silicon structure that uses thin-film piezoelectric material for actuation and sensing functions, and can be manufactured using silicon micro-machining techniques. The use of piezo-electric material for drive and pickoff offers potentially significant advantages over electrostatic/capacitive means in terms of achievable actuation forces and simplicity of structural design. This paper gives an overview of the design and analysis of a prototype sensor. The design concept is described and a low-order mathematical model, incorporating the inertial behavior of the structure and the interaction between the silicon structure and the piezo-drives and pickoffs is presented. This model allows the basic sensitivity of the sensor to be quantified. The design of a prototype sensor is then described. Some preliminary test results are presented, illustrating the feasibility of the concept.
The alert did not successfully save. Please try again later.
Christopher M. Royle, Colin H.J. Fox, "Development of a MEMS-rate sensor with PZT actuation and sensing," Proc. SPIE 4700, Smart Structures and Materials 2002: Smart Electronics, MEMS, and Nanotechnology, (11 July 2002); https://doi.org/10.1117/12.475018