15 July 2002 Design and development of a biomimetic device for micro air vehicles
Author Affiliations +
This paper presents the design and development of a pitching and plunging (flapping) mechanism for small-scale flight. In order to harness the unsteady lift mechanisms, used by most insects, a biologically inspired flapping/pitching device in conjunction with a rotary wing concept was developed and built. This mechanism attempts to replicate some of the aerodynamic phenomena that enhance the performance of small fliers, replacing the periodic translational motion with a unidirectional circular motion while actively flapping and pitching the rotor blades. In order to find the appropriate combination of phase, amplitude, frequency and rotational speed that leads to enhancement in lift, the device requires uncoupled independent pitch and flap actuation systems to permit the complete mapping of the parameter space. In the device under consideration the phase shift between the flapping and the pitching oscillations can be adjusted from 0 to 360 degrees over a wide range of rotational speeds. Maximum flapping and pitching amplitudes of +/- 23 degree(s) and +/- 20 degree(s) respectively can be attained. Linear displacements of two coaxial shafts are translated into the flapping and pitching motion of the rotor blades. The mechanism was designed to minimize the actuation stroke so that smart materials and conventional actuators such as motors and cams could be used. Kinematic analysis as well as experimental tests were performed. Using a customized test stand thrust and torque produced by the rotor were measured at different angles of attack, in steady-state and under periodical pitching actuation. The results showed that hover efficiency was considerably increased for a range of thrust coefficients. The device was developed based on the University of Maryland's rotary wing Micro Air vehicle (MAV) the MICOR (MIcro COaxial Rotorcraft), an electrically driven 100 g coaxial helicopter. It is anticipated that active flapping and/or pitching could be implemented in the prototype to improve its aerodynamic performance. The present paper will discuss the design and development process of a rotating/pitching/flapping mechanism for MAVs. Test results indicate that unsteady pitching motion can be used to include the aerodynamic effect of delayed stall. Performance measurements confirm that unsteady pitching motion improves efficiency in hover.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Felipe Bohorquez, Darryll J. Pines, "Design and development of a biomimetic device for micro air vehicles", Proc. SPIE 4701, Smart Structures and Materials 2002: Smart Structures and Integrated Systems, (15 July 2002); doi: 10.1117/12.474688; https://doi.org/10.1117/12.474688


Frequency modulation


Micro unmanned aerial vehicles





Back to Top