You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Combat always involves uncertainty and uncertainty entails risk. To ensure that a combat task is prosecuted with the desired probability of success, the task commander has to devise an appropriate task force and then adjust it continuously in the course of battle. In order to do so, he has to evaluate how the probability of task success is related to the structure, capabilities and numerical strengths of combatants. For this purpose, predictive models of combat dynamics for combats in which the combatants fire asynchronously at random instants are developed from the first principles. Combats involving forces with both unlimited and limited ammunition supply are studied and modeled by stochastic Markov processes. In addition to the Markov models, another class of models first proposed by Brown was explored. The models compute directly the probability of win, in which we are primarily interested, without integrating the state probability equations. Experiments confirm that they produce exactly the same results at much lower computational cost.
The alert did not successfully save. Please try again later.
Jan Jelinek, "Models for computing combat risk," Proc. SPIE 4716, Enabling Technologies for Simulation Science VI, (15 July 2002); https://doi.org/10.1117/12.474901