You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 November 2002Neutron resonance radiography for security applications
Fast Neutron Resonance Radiography (NRR) has been devised as an elemental imaging method, with applications such as contraband detection and mineral analysis. In the NRR method, a 2-D elemental mapping of hydrogen, carbon, nitrogen, oxygen and the sum of other elements is obtained from fast neutron radiographic images taken at different neutron energies chosen to cover the resonance cross section features of one or more elements. Images are formed using a lens-coupled plastic scintillator-CCD combination. In preliminary experiments, we have produced NRR images of various simulants using a variable energy neutron beam based on the Li(p,n)Be reaction and a variable energy proton beam. In order to overcome practical limitations to this method, we have studied NRR imaging using the D-D reaction at a fixed incident D energy and scanning through various neutron energies by using the angular variation in neutron energy. The object-detector assembly rotates around the neutron source and different energy (2-6 MeV) neutrons can be obtained at different angles from a D-D neutron source. The radiographic image provides a 2-D mapping of the sum of elemental contents (weighted by the attenuation coefficients). Transmission measurements taken at different neutron energies (angles) form a set of linear equations, which can then be solved to map individual elemental contents.
Richard C. Lanza
"Neutron resonance radiography for security applications", Proc. SPIE 4786, Penetrating Radiation Systems and Applications IV, (26 November 2002); https://doi.org/10.1117/12.456310
The alert did not successfully save. Please try again later.
Richard C. Lanza, "Neutron resonance radiography for security applications," Proc. SPIE 4786, Penetrating Radiation Systems and Applications IV, (26 November 2002); https://doi.org/10.1117/12.456310