You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 September 2002Automated registration of polarimetric imagery using Fourier transform techniques
Polarimetric imagery that is collected from time-sequential and multiple image format sensors all have potential for image misregistration. Since polarization is usually measured as small differences between radiometric measurements, it is highly sensitive to misregistration, especially at regions of high contrast. The general consensus in the polarization community is that image misregistration on the order of 1/10th of a pixel can introduce artifacts in polarization images. If the registration is not achieved and maintained to this resolution, the data must be registered in software. Typically, rotation and translation (horizontal and vertical) are the main transformations that need to be corrected. It is desirable to have a registration algorithm that determines rotations and translations to 1/10th of a pixel, does not require user intervention, takes minimal computation time, and is based on analytical (non-iterative), automated calculations. This paper details an analytical, automated registration algorithm that corrects for rotation and translations by using a Fourier transform technique. Examples of images registered with this algorithm, and estimates of residual misregistrations are presented. Typical processing times are also given.
The alert did not successfully save. Please try again later.
Christopher M. Persons, David B. Chenault, Michael W. Jones, Kevin Deane Spradley, Michael G. Gulley, Craig Alan Farlow, "Automated registration of polarimetric imagery using Fourier transform techniques," Proc. SPIE 4819, Polarization Measurement, Analysis, and Applications V, (25 September 2002); https://doi.org/10.1117/12.450935