You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 February 2003Characterization of the differential chromatic dispersion in a kilometric silica fiber stellar interferometer
We describe a preliminary experimental study of an interferometer built with two 500-meters-long arms made of polarization maintaining optical fibers. The control of the field polarization state along the single-mode fiber arms enables to measure fringe contrast up to 93% with a laser source emitting a 1290nm carrier wavelength. Preliminary contrast measurements achieved with broadband spectrum sources exhibit differential dispersion effect resulting from fiber inhomogeneities. Partial compensation of this effect is achieved by introducing additional fiber pieces on one arm. Moreover, we experimentally characterize the differential chromatic dispersion evolution as a function of the various additional fiber sections. Using the channeled spectrum method, a spectral analysis of the interferometric mixing allows to accurately measure the differential effect of chromatic dispersion i.e. second and third order term of the spectral phase shift.
The alert did not successfully save. Please try again later.
Guillaume Huss, Laurent Delage, Emmanuel Longueteau, Francois Reynaud, "Characterization of the differential dispersion in a kilometric silica fiber stellar interferometer," Proc. SPIE 4838, Interferometry for Optical Astronomy II, (21 February 2003); https://doi.org/10.1117/12.457131