You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 January 2003Dynamic modeling of turbulent shedding effect on the 30-meter primary mirror of GSMT
This paper presents a Navier-Stokes based numerical methodology for 3D unsteady viscous flow over a general mirror configuration. In this approach, the Reynolds averaged Navier-Stokes equations in finite volume form are solved unsteadily using Roe’s scheme on body fitted H-H type grid. A two-equation turbulence model was implemented. This method is three or five order accurate in space and first order accurate in time. The physical space modeled is a 120m×120m×120m region enclosing the primary mirror at the center. The inflow turbulence from the enclosure openings is represented by turbulence kinetic energy at the inflow boundary. The wind buffeting effect was studied by directly calculating flow field response to buffeting impinging wind. The unsteady pressure distribution on the mirror is extracted and analyzed for the amplitudes and frequencies of dynamic wind loading. The computational results are visualized to highlight the flow pattern, particularly on the mirror upper surface. Results are presented for a 30-meter aperture GSMT primary mirror. A 1:833 model of the GSMT primary mirror was tested in a water tunnel, in which the velocity distribution was measured using PIV technique. The preliminary experimental observation serves as qualitative validation of the simulation capability.
The alert did not successfully save. Please try again later.
Guanpeng Xu, Mark S. Whorton, Yong X. Tao, Myung K. Cho, "Dynamic modeling of turbulent shedding effect on the 30-m primary mirror of GSMT," Proc. SPIE 4840, Future Giant Telescopes, (30 January 2003); https://doi.org/10.1117/12.458038