You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 April 2003Earth observation system incorporating an LCTF spectropolarimeter
There is an emerging demand for remote sensing technologies that can determine the surface characteristics of objects from the properties of reflected light. In particular, hyperspectral analysis of solar rays reflected from the Earth's surface is expected to play an increasingly important role in Earth environment observation. The National Aerospace Laboratory (NAL) has developed a new type of imaging spectropolarimeter for such analysis that uses a liquid crystal tunable filter (LCTF), and efforts are now under way to develop it into a practical aircraft or spacecraft on-board sensor system for Earth environment sensing. This paper first presents the concept and architecture of an Earth observation system using an LCTF optical sensor which can sense radiation in the 400-720 nm wavelength band. The results of laboratory experiments to evaluate the performance characteristics of the observation system, e.g. hyperspectral resolution, optional selection of the plane of polarization, etc. are then presented, and the results of preliminary image acquisition experiments that demonstrate the feasibility of acquiring of spectral images is also shown. Finally, the applicability of the LCTF spectropolarimeter to Earth observation is summarized based on the results of the laboratory and field evaluation experiments.