You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 August 2002Rediscovering the waveguide beam splitter/combiner
By establishing the relation of Talbot self-imaging effects in free space and in waveguide, we have rediscovered the self-imaging diffraction effect in waveguide with the view of Talbot effect in free-space. We have found that the diffraction theory of Talbot effect in free space do give us a set of simplified equations, that can't be obtained with the theory of multimode interference (MMI), beam propagation method, etc.. We show that simple equations for explanation of Talbot self-imaging effect in free space can be used to design the waveguide beam splitters and combiners. Thus, the heavy designing work with the previous multimode interference method can be released with the new simple equations. More importantly, new configurations of waveguide beam splitters and combiners can be designed with the simple equations. The importance of rediscovering waveguide beam splitter is that a complete new and clear physical picture can explain the complex self-imaging phenomena in waveguide, which should be highly interesting for practical applications.
The alert did not successfully save. Please try again later.
Changhe Zhou, Xin Zhao, Liren Liu, "Rediscovering the waveguide beam splitter/combiner," Proc. SPIE 4904, Optical Fiber and Planar Waveguide Technology II, (28 August 2002); https://doi.org/10.1117/12.481271