Translator Disclaimer
29 August 2002 Novel photonic crystal materials based on nanocomposites
Author Affiliations +
Proceedings Volume 4905, Materials and Devices for Optical and Wireless Communications; (2002) https://doi.org/10.1117/12.481020
Event: Asia-Pacific Optical and Wireless Communications 2002, 2002, Shanghai, China
Abstract
An unparalleled range of photonic nanocomposites has been developed utilizing surface engineering over preformed nanoparticles. These nanocomposites cover a number of organic polymers as host materials. By controlling a loading level of inorganic nanoparticles (e.g., nano-TiO2) within a polymer host, important optical parameters including the refractive index (n) can be varied over 50~100 % with respect to the corresponding polymer matrix. This refractive index control capability enables a large refractive index contrast (Dn) that is a very significant requirement for fabrication of microphotonic devices such as photonic crystals. High levels of nanoparticle dispersion within a polymer host can be achieved even at loading levels up to 60 wt% to assure low scattering, i.e., transparent coated films in the infrared and visible light regions for photonic crystal applications. This paper presents nano-engineered polymer-based photonic crystal materials and processes to make them. Use of very uniform nanoparticles preformed by laser-driven chemical reaction is vital for successful fabrication of optical-class composite films and described here. Major benefits out of the current approach are discussed including (a) high Δn, (b) easy-to-fabricate 'hetero-interface', a minimal unit of periodic photonic crystal structures, and (c) significant economical benefit.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Nobuyuki Kambe, Yigal D. Blum, Benjamin Chaloner-Gill, Christian Honeker, and D. Brent MacQueen "Novel photonic crystal materials based on nanocomposites", Proc. SPIE 4905, Materials and Devices for Optical and Wireless Communications, (29 August 2002); https://doi.org/10.1117/12.481020
PROCEEDINGS
8 PAGES


SHARE
Advertisement
Advertisement
Back to Top