Translator Disclaimer
13 June 2003 From molecular PDT damage to cellular PDT responses: attempts at bridging the gap on the role of Bcl-2
Author Affiliations +
Expression of the anti-apoptotic proteins Bcl-2 and/or Bcl-xL is greatly elevated in many advanced cancers, especially those resistant to standard therapies, such as radiation or chemotherapy. It has been suggested that those two proteins would be attractive targets for the development of new cancer treatments. Photodynamic therapy (PDT) with photosensitizers that localize in or target mitochondria, such as the phthalocyanine Pc 4, specifically attack the anti-apoptotic protein Bcl-2, generating a variety of oxidized, complexed, and cleaved photoproducts. The closely related protein Bcl-xL is also a target of Pc 4-PDT. In a recent study employing transient transfection of an expression vector encoding deletion mutants of Bcl-2, we identified the membrane anchorage regions of the protein that are required to form the photosensitive target. In spite of the demonstrated photodamage to Bcl-2 (and Bcl-xL), how the photodamage translates into changes in the sensitivity of cells to PDT-induced apoptosis or other modes of cell death is not clear, and it also remains unclear how elevated amounts of anti-apoptotic proteins in tumors might make them more or less responsive to PDT. In the present study, we have studied the PDT response of MCF7 human breast cancer cells overexpressing wild-type Bcl-2 or certain deletion mutants either in a transient or stable mode. We show that cells expressing modestly elevated amounts (<10-fold increase) of Bcl-2 and in which the pro-apoptotic protein Bax is not upregulated do not differ from the parental cells with respect to PDT-induced cell killing. In contrast, cells expressing higher amounts (>50-fold increase) of Bcl-2 or certain mutants are made significantly more resistant to the induction of apoptosis and the loss of clonogenicity upon exposure to Pc 4-PDT. In the presence of high levels of Bcl-2, extensive photodamage requires higher PDT doses. We conclude that Pc 4-PDT targets Bcl-2 and Bcl-xL, eliminating one mechanism that protects the tumor cells from other types of therapy. However, it is possible that cells expressing very high levels of the anti-apoptotic proteins might still be resistant to PDT. The data suggest that PDT with a non-vascular-targeting photosensitizer might be effective in a combination treatment in which Bcl-2 and Bcl-xL are first photodamaged before delivery of a second agent.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jitsuo Usuda, Liang-yan Xue, Song-mao Chiu, Kashif Azizuddin, Rachel L. Morris, John Mulvihill, and Nancy L. Oleinick "From molecular PDT damage to cellular PDT responses: attempts at bridging the gap on the role of Bcl-2", Proc. SPIE 4952, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XII, (13 June 2003);

Back to Top