You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 July 2003Phase-resolved polarization sensitive optical coherence tomography imaging of tendon and muscle
We describe a phase-resolved polarization sensitive optical coherence tomography system that can obtain the Stokes vectors, polarization diversity intensity, and birefringence images of rat-tail tendon and muscle. The Stokes vectors were obtained by processing the analytical interference fringe signals from two perpendicular polarization-detection channels for the same reference polarization state. From the four Stokes vectors, the birefringence image, which is insensitive to orientation of the optical axis in the sample, and the polarization diversity intensity image, in which speckle noise is greatly reduced, were obtained. The birefringence changes in the rat muscle caused by freezing were investigated using phase-resolved polarization sensitive optical coherence tomography. It was found that freezing degrades birefringence in rat muscle.
The alert did not successfully save. Please try again later.
Hongwu Ren, Yimin Wang, Zhihua Ding, Yonghua Zhao, J. Stuart Nelson M.D., Zhongping Chen, "Phase-resolved polarization sensitive optical coherence tomography imaging of tendon and muscle," Proc. SPIE 4956, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, (8 July 2003); https://doi.org/10.1117/12.478965