You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 June 2003Photon echo spectroscopy as a probe of dynamics in the immune system
Photon echo spectroscopy has been used to resolve the amplitudes and time scales of reorganization resulting from electronic excitation of the chromophore in three fluorescein-binding antibodies. The spectral density of nuclear motions derived by fitting the data serves as a characterization of protein flexibility. The three antibodies show motions that range in time scale from tens of femtoseconds to nanoseconds. Relative to the others, one antibody, 4-4-20, possesses a rigid binding site, that likely results from a short and inflexible HCDR3 loop and residue TyrL32 acting as a 'molecular splint,' to rigidify the Ag across its most flexible degree of freedom. The remaining two antibodies possess binding sites that are considerably more flexible, possibly due to the increased length of the HCDR3 loops. These variations in binding site flexibility may result in differing mechanisms of antigen recognition, including lock-and-key, induced-fit, and conformational selection.
The alert did not successfully save. Please try again later.
Ralph Jimenez, Floyd E. Romesberg, "Photon echo spectroscopy as a probe of dynamics in the immune system," Proc. SPIE 4978, Commercial and Biomedical Applications of Ultrafast Lasers III, (19 June 2003); https://doi.org/10.1117/12.478604