You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 June 2003Widely tunable micromachined filters using stress control of multilayer mirrors
We proposed and demonstrated a micromachined filter with a strain control layer, which gives us novel functions including temperature insensitive operation, thermal wavelength tuning, wavelength trimming and 2-D multi-wavelength integration. In this paper, we present the design and the fabrication of micromachined thermally tunable filters with a low tuning voltage.
In our micromachined micromachined filter, an air gap is formed between GaAlAs/GaAs DBRs with an upper DBR mirror freely suspended above the substrate by a cantilever structure. A novelty in our devices is to add a GaAs or GaAlAs thermal strain control layer on the upper DBR. We can freely control the temperature dependence of the proposed MEMS cavity. Either temperature insensitive operation or wide wavelength tuning induced by temperature change can be realized.
Also, we fabricated a micromachined thermally tunable filter with a heating element. There are two electrodes integrated on the top p-type doped strain control layer of this filter for heating the cantilever. When a voltage is applied between the two electrodes resulting in heating, the micromachined cantilever moves due to thermal strain. The proposed structure enables thermal wavelength tuning either for red shift or blue shift. The amount of wavelength tuning is controlled by the length and the thermal capacity of the cantilever. We can expect much lower tuning voltage than conventional electrostatic force tuning scheme. We measured the tuning characteristics of fabricated filters with changing an applied voltage between two electrodes. We could obtain blue-shift wavelength tuning of over 50 nm with an applied voltage of 6 V.
Fumio Koyama andTakeru Amano
"Widely tunable micromachined filters using stress control of multilayer mirrors", Proc. SPIE 4987, Integrated Optics: Devices, Materials, and Technologies VII, (19 June 2003); https://doi.org/10.1117/12.478333
The alert did not successfully save. Please try again later.
Fumio Koyama, Takeru Amano, "Micromachined tunable filters using stress control of multilayer semiconductor mirrors," Proc. SPIE 4987, Integrated Optics: Devices, Materials, and Technologies VII, (19 June 2003); https://doi.org/10.1117/12.478333