1 July 2003 Tomographic reconstruction of dynamic objects
Author Affiliations +
In this paper, we propose a unified variational framework for tomographic reconstruction of 3-D dynamic objects. We use a geometric scene model, where the scene is assumed to be composed of discrete objects captured by their continuous surface boundaries. Object dynamics are modeled as consisting of separate intensity dynamics and object boundary dynamics. The shape dynamics are incorporated into our variational framework by defining a new distance measure between surfaces based on their signed distance functions, which is an extension of our previous definition of distance between curves. These models are then combined in a unified variational framework which incorporates the observation data, shape and intensity dynamics, and prior information on object spatial smoothness. The object surface and intensity sequences are estimated jointly as the minimizer of the resulting energy function. A coordinate descent algorithm based on surface evolution is developed to solve this nonlinear optimization problem. Efficient level set methods are used to implement the algorithm. This approach evolves the surfaces from their initial position to the final solution and handles topological uncertainties automatically.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yonggang Shi, Yonggang Shi, William Clement Karl, William Clement Karl, } "Tomographic reconstruction of dynamic objects", Proc. SPIE 5016, Computational Imaging, (1 July 2003); doi: 10.1117/12.483902; https://doi.org/10.1117/12.483902


Regularized CT reconstruction on unstructured grid
Proceedings of SPIE (March 31 2016)
Diffuse tomography
Proceedings of SPIE (August 26 1993)
Damping models in elastography
Proceedings of SPIE (March 28 2007)

Back to Top