2 May 2003 CT measurement of indomethacin-induced cerebral hemodynamic changes in the newborn piglet
Author Affiliations +
Abstract
Patent ductus arteriosus (PDA), a common condition among preterm infants, increases the risk of intraventricular hemorrhage, bronchopulmonary dysplasia, and death in afflicted individuals. Current clinical treatment of PDA relies on use of the drug indomethacin to close the ductus arteriosus. In the present study, we have investigated the effect of indomethacin on cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral mean transit time (MTT) in newborn piglets using computed tomography (CT) perfusion. Twenty newborn piglets divided by age into two groups, less than 12 hours of age (n = 10) and greater than 12 hours of age (n = 10) were studied. Five piglets in each group received indomethacin treatment (0.2 mg/kg infused over 30 min) while remaining piglets served as controls. No significant changes in CBF were observed in control groups. In both indomethacin treated groups, average CBF decreased 32.3% and 34.3% (P > 0.05) below baseline immediately post infusion in piglets less than and greater than 12 hours of age respectively. Piglets less than 12hours of age treated with indomethacin also exhibited a delayed increase in CBF, maximum average increase of 41.7% (P > 0.05) above baseline at 210 min post infusion, a response not observed in the corresponding group of piglets greater than 12 hours of age. The observed age dependent response may be due to functional/anatomical closure of the PDA.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Derek W. Brown, Jennifer Hadway, Ting-Yim Lee, "CT measurement of indomethacin-induced cerebral hemodynamic changes in the newborn piglet", Proc. SPIE 5031, Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications, (2 May 2003); doi: 10.1117/12.480418; https://doi.org/10.1117/12.480418
PROCEEDINGS
8 PAGES


SHARE
KEYWORDS
Personal digital assistants

Computed tomography

Hemodynamics

Control systems

Tissues

Blood

Brain

Back to Top