PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
SBIR's family of MIRAGE infrared scene projection systems is undergoing significant growth and expansion. SBIR has completed the transition of Honeywell's resistive emitter technology to MCNC Research and Development Institute (MCNC-RDI), and is preparing for first-lot production of IR emitters in support of ongoing programs. Development of MIRAGE resistive emitter-based products is underway in order to increase maximum scene temperature, decrease radiance rise time, and improve overall operation. The 1024 x 1024 Large Format Resistive Array (LFRA) Read-In Integrated Circuit (RIIC) has been fabricated and tested, with emitter fabrication to start in mid-2003. A next-generation MIRAGE II(512 x 512) RIIC is also ready for fabrication, in support of high-performance MIRAGE II 512 x 512 systems providing greater than 750 K MWIR apparent temperature, and less than 5 ms 10-90% MWIR radiance rise time. In support of these new technologies and products, SBIR has developed test equipment and facilities for use in next-generation MIRAGE device wafer probing, test, evaluation, diagnostic, and assembly processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The next generation of resistively heated emitter pixels is expected to attain apparent temperatures more than a factor of two higher than presently achievable - in excess of 2000 K. The peak temperatures for the current generation of devices are determined by the balance between the power input to the pixel and the conductive loss of heat through the leg structures. At pixel temperatures higher than approximately 1500-2000 K, radiative losses will begin to dominate over conductive losses. We explore the physics of this regime and find that the peak temperature is determined primarily by the power input, emissivity and emitting area. The speed of radiatively limited pixels is also examined and found to be considerably more complicated than that of conductively limited pixels since both loss terms play significant roles in the pixel's dynamic behavior. In order to attain the higher temperatures required, development work will be required on two fronts: materials science and advanced, higher power drive circuitry. Some of the critical issues related to these tasks are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The development of a new generation PC-based array control electronics (PACE) system was completed during the first quarter of 2003 in the Kinetic Kill Vehicle Hardware-in-the-loop (KHILS) facility. This system replaces the bulky VME-based system that was the previous standard with more compact digital control electronics using field-programmable gate array (FPGA) technology hosted on a personal computer. The analog interface electronics (AIE) were redesigned to eliminate obsolete components and miniaturize the package for better compatibility with harsh environments. The resulting PACE system supports both Santa Barbara Infrared Inc. (SBIR) and Honeywell Technology Center's (HTC's) 512 x 512 legacy emitter array infrared projection devices as well as SBIR's upcoming 1024 x 1024 and next-generation 512 x 512 arrays. Two FPGA-based PCI boards enable this system to reconfigure the inputs, processing and outputs of the projection electronics through firmware loaded from the control PC. The increased flexibility provides potential for additional real-time functions such as distortion correction, convolution and calibration to be implemented along with nonuniformity correction (NUC) techniques by simply reconfiguring firmware. This paper describes the capabilities of the new PACE system in terms of current and future hardware-in-the-loop (HITL) requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Micromirror Array Projector System (MAPS) is a state-of-the-art dynamic scene projector developed by Optical Sciences Corporation (OSC) for Hardware-In-the-Loop (HWIL) simulation and sensor test applications. Since the introduction of the first MAPS in 2001, OSC has continued to improve the technology and develop systems for new projection and test applications. The MAPS is based upon the Texas Instruments Digital Micromirror Device (DMD) which has been modified to project high resolution, realistic imagery suitable for testing sensors and seekers operating in the UV, visible, NIR, and IR wavebands. This paper reviews the basic design and describes recent developments and new applications of the MAPS technology. Recent developments for the MAPS include increasing the format of the micromirror array to 1024x768 and increasing the binary frame rate to 10KHz. The MAPS technology has also been applied to the design of a Mobile Extended Spectrum Electro-Optical Test Set (MESEOTS). This test set is designed for testing UV, visible, NIR and IR sensors as well as laser rangefinders, laser trackers, and laser designators. The design and performance of the improved MAPS and the MESEOTS are discussed in paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Resistive emitter-based IRSP technology still leads the industry in terms of a flickerless, high dynamic range test solution. Santa Barbara Infrared (SBIR) is producing a high performance 1024 x 1024 Large Format Resistive emitter Array (LFRA) for use in the next generation of IR Scene Projectors (IRSPs). The CMOS Read-In Integrated Circuit (RIIC) was designed by SBIR and Indigo Systems, and fabricated at AMI Semiconductor. Performance and features include > 700 K MWIR maximum apparent temperature, 5 ms radiance rise time (10-90%), 200 Hz full frame update, and 400 Hz window mode operation. Ten 8” CMOS wafers have been fabricated and preliminarily characterized. Emitter pixel design is underway and emitter fabrication is scheduled to start at Microelectronics Center of North Carolina Research & Development Institute (MCNC-RDI) in mid-2003. This paper discusses the RIIC design, wafer probe test results, emitter pixel design, emitter fabrication plans, packaging and test plans, and reports on 1024 x 1024 IRSP system component development status.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
LFK-Lenkflugkoerpersysteme GmbH develops missile systems for a wide field of military purposes. The Hardware-in-the-Loop (HWIL) facility of LFK in Unterschleissheim uses a five axis motion simulation table and an IR scene projection system. The system is designed for test and evaluation of several missile programs due to the dimensions of
the five axis table and it's dynamic performance /1/. In a certain cruise missile program there was the need for system tests with nearly all components of the missile as well as special investigations and validation trials for the subsystem consisting of the IR-seeker and the image processing computer. The components had also to pass their qualification tests with the assistance of the HWIL team. These tests and their analysis are focussed to the mechanical accuracy of the gimbals and resolvers of the IR seeker and the tracking accuracy of the image processing computer. Before starting tests in the HWIL it is absolutely necessary to identify errors caused by mechanical tolerances of the test equipment (e.g. mounting of the seeker and the IR projection system) on the five axis motion simulator. Otherwise the obtained test results includes these errors and lead to incorrect system performance evaluation. There are different mechanical errors in mounting which can occur are analysed below. The main problem is caused by possible shifts of the IR-seeker in a plane perpendicular to the optical axis (with gimbals in zero position). Therefore a procedure has been developed using IR test images, a frame grabber and image processing routines to determine the
mounting failures. These can be corrected by using mechanical adjustment tools designed and realised for this purpose.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
An unexpected effect was observed in a data set recently measured at the Kinetic Kill Vehicle Hardware-in-the-loop Simulator (KHILS) facility. A KHILS projector was driven to illuminate a contiguous block of emitters, with all other emitters turned off. This scene was measured with a two-color IR sensor. A sequence of 100 images was recorded, and certain statistics were computed from the image sequence. After measuring and analyzing these images, a “border” was observed with a particularly large standard deviation around the bright rectangular region. The pixels on the border of the region were much noisier than either inside or outside of the bright region. Although several explanations were possible, the most likely seemed to be a small vibration of either the sensor or projector. The sensor, for example, uses a mechanical cyro-cooler, which produces a vibration that can be felt by hand. Further analyses revealed an erratic motion of the position of objects in the image with amplitude of a few tents of the detector pitch. This small motion is sufficient to produce large fluctuations in the image pixel values in regions that have a large radiance gradient - such as suggest that the standard deviation of a “block image” sequence is easy to compute and will show the characteristic effect in the presence of image motion as small as a fraction of the detector pitch.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The effects of distortion in the complex optical system of an IR scene projector have motivated the development of methods for spatial calibration for scene projectors. A typical method utilizes the projection of a set of test images, with careful measurement of the location of points in the image. Given the projected and measured positions, a parametric model is used to describe the spatial “distortion” of the projection system. This distortion model can then be used for a variety of purposes, including pre-processing the images to be projected so that the distortion of the projection system is pre-compensated, and the distortion of the projection system is negated. This application and specific method have been demonstrated, and can compensate for a variety of distortion and alignment effects in the projector / sensor configuration. Personnel at the Kinetic Kill Vehicle Hardware-in-the-loop Simulator (KHILS) facility have demonstrated compensation and co-alignment of 2-color projection systems with sub-pixel precision using this technique. This paper describes an analysis of a situation in which pre-compensated images are translated (either mechanically or optically) to simulate motion of a target object or adjust alignment of the sensor and projector. The effect of physically translating images that had been pre-compensated for a different projector/sensor alignment was analyzed. We describe the results of a study of the translation and distortion effects, and characterize the expected performance of a testing procedure that requires translation of the pre-compensated images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Infrared Projector Applications: The Two-Color Dilemma
Infrared projection systems based on resistor arrays typically produce radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. This makes it possible to test infrared sensors with spectral responsivity anywhere in this range. Two resistor-array projectors optically folded together can stimulate the two bands of a 2-color sensor. If the wavebands of the sensor are separated well enough, it is possible to fold the projected images together with a dichroic beam combiner (perhaps also using spectral filters in front of each resistor array) so that each resistor array independently stimulates one band of the sensor. If the wavebands are independently stimulated, it is simple to perform radiometric calibrations of both projector wavebands. In some sensors, the wavebands are strongly overlapping, and driving one of the resistor arrays stimulates both bands of the unit-under-test (UUT). This “coupling” of the two bands causes errors in the radiance levels measured by the sensor, if the projector bands are calibrated one at a time. If the coupling between the bands is known, it is possible to preprocess the driving images to effectively decouple the bands. This requires performing transformations, which read both driving images (one in each of the two bands) and judiciously adjusting both projectors to give the desired radiance in both bands. With this transformation included, the projection system acts as if the bands were decoupled - varying one input radiance at a time only produces a change in the corresponding band of the sensor. This paper describes techniques that have been developed to perform radiometric calibrations of spectrally coupled, 2-color projector/sensor systems. Also presented in the paper are results of tests performed to demonstrate the performance of the calibration techniques. Possible hardware and algorithms for performing the transformation in real-time are also presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Infrared detectors operating in two or more wavebands can be used to obtain emissivity-area, temperature, and related parameters. While the cameras themselves may not collect data in the two bands simultaneously in space or time, the algorithms used to calculate such parameters rely on spatial and temporal alignment of the true optical data in the two bands. When such systems are tested in a hardware-in-the-loop (HWIL) environment, this requirement for alignment is in turn imposed on the projection systems used for testing. As has been discussed in previous presentations to this forum, optical distortion and misalignment can lead to significant band-to-band and band-to-truth simulation errors. This paper will address the potential impact of techniques to remove these errors on typical two-color estimation algorithms, as well as improvements obtained using distortion removal techniques applied to HWIL data collected at the Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) facility.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In some of its infrared projection systems, the Kinetic Kill Vehicle Hardware-In-the-Loop Simulator (KHILS) facility uses two 512 x 512 Wideband Infrared Scene Projector (WISP) resistor arrays to stimulate two different camera wavebands at the same time. The images from the two arrays are combined with a dichroic beam combiner, allowing the two camera bands to be independently stimulated. In early tests it was observed that the projector bands were not completely independent. When one array was projecting, the projected pattern could be seen in the opposite camera band. This effect is caused by spectral “crosstalk” in the camera/projector system. The purpose of this study was to build a mathematical model of the crosstalk, validate the model with measurements of a 2-color projection system, and then use the model as a tool to determine the spectral characteristics of filters that would reduce the crosstalk. Measurements of the crosstalk were made in the KHILS 2-color projector with two different 2-color cameras. The KHILS Quantum Well Infrared Photodetector (QWIP) Mid-Wave (MW)/Long-Wave (LW) camera and the Army Research Laboratory HgCdTe (HCT) MW/LW camera were used in the tests. The model was used to analyze the measurements, thus validating the model at the same time. The model was then used to describe conceptual designs of new 2-color projection configurations, enabling a prediction of crosstalk in the system, and selection of filters that would eliminate the crosstalk.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The DSTO Primary Infrared Scene Projection (PIRSP) system has been used to investigate the practical application of the emitter array flood nonuniformity correction (NUC) technique. In the first instance the measurements have been limited to the special case of unity mapping ratio. The methods for achieving unity mapping at sub-pixel registration are described; in particular, the use of Moire fringes for accurately measuring the optical distortion across the field-of-view and for attaining the optimal mapping condition. Application of the flood NUC technique within the PIRSP system is discussed in terms of its convergence limitations. The latter include the presence of spatial and temporal camera noise, optical distortion, the mixing of neighbouring pixel information due to the finite point spread function and radiance-to-voltage transformation errors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A new infrared projector emitter response curve-fitting procedure suitable for generating nonuniformity coefficients capable of being applied in existing real-time processing architectures is introduced. The procedure has been developed through detailed analysis of a Honeywell Multi-Spectral Scene Projector (MSSP) sparse array data set, combined with an appreciation of the underlying physical processes that lead to the generation of infrared radiance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
For many types of infrared scene projectors, differences in the outputs of individual elements are one source of error in projecting a desired radiance scene. This is particularly true of resistor-array based infrared projectors. Depending on the sensor and application, the desired response uniformity may prove difficult to achieve. The properties of the sensor used to measure the projector outputs critically affect the procedures that can be used for nonuniformity correction (NUC) of the projector, as well as the final accuracy achievable by the NUC. In this paper we present a description of recent efforts to perform NUC of an infrared projector under “adverse” circumstances. For example, the NUC sensor may have some undesirable properties, including: significant random noise, large residual response nonuniformity, temporal drift in bias or gain response, vibration, and bad pixels. We present a procedure for reliably determining the output versus input response of each individual emitter of a resistor array projector. This NUC procedure has been demonstrated in several projection systems at the Kinetic Kill Vehicle Hardware-In-the-Loop Simulator (KHILS) including those within the KHILS cryogenic chamber. The NUC procedure has proven to be generally robust to various sensor artifacts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Stressing requirements for real-time hardware-in-the-loop scene generation include high performance and high precision. Scene generation frame rates in excess of 100 Hz are common to stimulate fast frame rate sensors. In addition, high bit precision requirements from 12 bits to 24 bits for rendered imagery depend on sensor dynamic ranges and projector capabilities. Until recently, the use of PC-based graphics hardware was unsuitable for high-end scene generation because of the inability of meeting these requirements. However, PC graphics chip technology has evolved to a level where these requirements can now be satisfied. The latest generation of PC graphics chips can perform computations with 32-bit floating-point precision per color component throughout the entire graphics pipeline. This high precision coupled with the flexibility of programmable graphics allows for targeted rendering algorithms specifically designed for various types of sensors including visual, infrared, and ladar. Graphics performance also has increased with each successive chip generation. Integration of this technology into a commercially available scalar multi-chip system with frame synchronization provides a solution with the highest performance possible on a PC-based platform. By partitioning the rendering of a frame among each synchronized system unit, the frame rate performance can be increased to meet the sensor requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This paper describes the current research in integrating Personal Computer technology into the U.S. Army Aviation and Missile Command (AMCOM) Hardware-in-the-Loop (HWIL) facilities. Using both COTS hardware along with custom built interfaces; the system under development will be used to replace high-end graphics workstations that provide infrared image generation. Infrared scene generation is an integral component in the HWIL testing of missile seeker units. This functionality must be more accessible, portable, and affordable as HWIL testing becomes more integral and more widely distributed in the development life cycle of missile systems. The graphics system under development is designed to be a more feasible plug-in replacement for existing infrared scene generation systems. Real-time performance and support of existing interfaces to simulation computers, projectors, and missile components are the primary considerations in designing this system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A revolution is underway within commercial PC video graphics, driven mainly by the 3-D gaming community and its demands for customizable lighting effects and realistic, visually appealing, 3-D rendering. This revolution is bringing about a configurable transformation and lighting (T&L) engine within modern PC video graphics hardware. The results of these technological advancements will profoundly impact the way computer-based rendering is done. Although PC graphics hardware continues to change rapidly, it has evolved to the point where it can be made to address most of the Hardware-In-the-Loop (HWIL) scene generation demands which historically could be accomplished only on costly graphics workstations. With the ability to control how operations are performed within the hardware rendering process, it is possible to implement customized per-pixel spatial and lighting effects. To illustrate how these capabilities can be applied to solve certain HWIL scene generation problems. A graphics hardware approach will be implemented to demonstrate a method of achieving increased monochrome intensity resolution and a user-defined spatial distortion. There is great potential in modern graphics hardware. The limits are becoming less a function of the hardware capabilities and more a function of the ability of engineers and scientists to exploit the functionality of this rapidly advancing hardware rendering technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Real-Time Scene Generation: Refinements and Enhancements
Aliasing is unavoidable in real-time computer image generation due to the sampling processes occurring within the graphics hardware. In particular, aliasing produces scintillation effects and significant radiometric inaccuracy when targets are rendered at long range. The zoom anti-aliasing techniques designed to alleviate the inherent aliasing problems are reviewed here. It is shown that since these rely on computational power rather than on optimal use of the extensive set of functions available within the graphics hardware they tend to be slower and more complex than necessary. A new technique based on use of the graphics hardware functions is described and compared to the earlier techniques. It is shown that the technique is faster and less complex while being similarly capable in reducing the level of aliasing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Laser profilometers hold the promise of improving smart munition detection and aimpoint selection performance when combined with data from other sensor types, such as passive thermal infrared. The high cost of physically testing sensor systems dictates that simulation should be used whenever possible. This paper describes the development and preliminary verification of a profilometer simulation developed as part of a larger smart munition sensor simulation model. A single-scattering laser profilometer model, which predicts returns from passive illumination sources, such as the sun and sky, in addition to laser returns, is formulated and implemented. Several simple scenarios are simulated to test model behavior as a function of environmental illumination, reflecting material, and target geometry. Results agree with expectations and show the importance including environmental conditions and detailed material reflective properties in the model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Scene projection for HITL testing of LADAR seekers is unique because the 3rd dimension is time delay. Advancement in AFRL for electronic delay and pulse shaping circuits, VCSEL emitters, fiber optic and associated scene generation is underway, and technology hand-off to test facilities is expected eventually. However, size and cost currently projected behooves cost mitigation through further innovation in system design, incorporating new developments, cooperation, and leveraging of dual-purpose technology. Therefore a concept is offered which greatly reduces the number (thus cost) of pulse shaping circuits and enables the projector to be installed on the mobile arm of a flight motion simulator table without fiber optic cables. The concept calls for an optical MEMS (micro-electromechanical system) steerable micro-mirror array. IFOV’s are a cluster of four micro-mirrors, each of which steers through a unique angle to a selected light source with the appropriate delay and waveform basis. An array of such sources promotes angle-to-delay mapping. Separate pulse waveform basis circuits for each scene IFOV are not required because a single set of basis functions is broadcast to all MEMS elements simultaneously. Waveform delivery to spatial filtering and collimation optics is addressed by angular selection at the MEMS array. Emphasis is on technology in existence or under development by the government, its contractors and the telecommunications industry. Values for components are first assumed as those that are easily available. Concept adequacy and upgrades are then discussed. In conclusion an opto-mechanical scan option ranks as the best light source for near-term MEMS-based projector testing of both flash and scan LADAR seekers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Hardware-in-the-loop (HWIL) testing has, for many years, been an integral part of the modeling and simulation efforts at the U.S. Army Aviation and Missile Command's (AMCOM) Aviation and Missile Research, Engineering, and Development Center (AMRDEC). AMCOM's history includes the development, characterization, and implementation of several unique technologies for the creation of synthetic environments in the visible, infrared, and radio frequency spectral regions and AMCOM has continued significant efforts in these areas. This paper describes recent advancements at AMCOM's Advanced Simulation Center (ASC) and concentrates on Ladar HWIL simulation system development.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Air Force Research Laboratory (AFRL) Aerothermal Targets Analysis Program (ATAP) is a user-friendly, engineering-level computational tool that features integrated aerodynamics, six-degree-of-freedom (6-DoF) trajectory/motion, convective and radiative heat transfer, and thermal/material response to provide an optimal blend of accuracy and speed for design and analysis applications. ATAP is sponsored by the Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) facility at Eglin AFB, where it is used with the CHAMP (Composite Hardbody and Missile Plume) technique for rapid infrared (IR) signature and imagery predictions. ATAP capabilities include an integrated 1-D conduction model for up to 5 in-depth material layers (with options for gaps/voids with radiative heat transfer), fin modeling, several surface ablation modeling options, a materials library with over 250 materials, options for user-defined materials, selectable/definable atmosphere and earth models, multiple trajectory options, and an array of aerodynamic prediction methods. All major code modeling features have been validated with ground-test data from wind tunnels, shock tubes, and ballistics ranges, and flight-test data for both U.S. and foreign strategic and theater systems. Numerous applications include the design and analysis of interceptors, booster and shroud configurations, window environments, tactical missiles, and reentry vehicles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A challenging aspect of real-time infrared scene generation for the hardware-in-the-loop (HWIL) testing of infrared-guided weapon systems is the rendering of particle systems to present gaseous and particulate volumes. In this paper a simplified technique is described for generating real-time particle effects with high spatial and temporal fidelity by using many less primitives than traditional means. The technique is suitable for representing plumes and countermeasures and enables the simulation of several key capabilities including internal flow, turbulence, persistence and structure, all capable of being varied dynamically as a function of power setting at source. The principles of operation, software implementation and general performance are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as critical operational parameters of turbine structural components or unit turbine components fabricated from advanced and exotic new materials or using new fabrication methods. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Hardware-in-the-loop testing has, for many years, been an integral part of the modeling and simulation efforts at the U.S. Army Aviation and Missile Command's (AMCOM) Aviation and Missile Research, Engineering, and Development Center (AMRDEC). AMCOM's history includes the development, characterization, and implementation of several unique technologies for the creation of synthetic environments in the visible and infrared regions and AMCOM has continued significant efforts in these areas. Recently, AMCOM has been testing and characterizing a new state-of-the-art resistor array projector and advanced flight motion simulator (FMS). This paper describes recent test and integration activities of the Honeywell BRITE II emitter array and its integration into an infrared scene projector (IRSP) compatible with a new Carco Flight Motion Simulator (FMS).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Northrop Grumman Amherst Systems recently completed delivery of an IR/UV sensor stimulation and test system (STS) to the U.S. Army Intelligence and Information Warfare Directorate's (I2WD) Communications-Electronics Command (CECOM) Installed Systems Test Facility (ISTF) at Ft. Monmouth, NJ. The STS consists primarily of a PC network controlling two ESL MEON(SIL) IR/UV stimulation units. The STS provides MIL-STD-1553B bus traffic monitoring for the Common Missile Warning System (CMWS) self-protection missile warning system. The sensor was tested in an uninstalled configuration; however, the stimulation system is capable of performing the same tests on an installed sensor suite. This paper will describe the STS architecture (both hardware and software), the technical challenges overcome during the program and the test capabilities of the system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Real-Time Scene Generation: Refinements and Enhancements
Northrop Grumman Amherst Systems has continued to improve the Real-time IR/EO Scene Simulator (RISS) for hardware-in-the-loop (HWIL) testing of infrared sensor systems. Several new and enhanced capabilities have been added to the system for both customer and internal development programs. A new external control capability provides control of either player trajectories or unit-under-test (UUT) orientation. The RISS Scene Rendering Subsystem (SRS) has been enhanced with support for texture transparency and increased texture memory capacity. The RISS Universal Programmable Interface (UPI) graphical user interface (GUI) has been improved to provide added flexibility and control of the real-time sensor modeling capabilities. This paper will further explore these and other product improvements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Air Force Electronic Warfare Evaluation Simulator (AFEWES) Infrared Countermeasures (IRCM) test facility currently has the ability to simulate a complete IRCM test environment, including IR missiles in flight, aircraft in flight, and various IR countermeasures including maneuvers, point-source flares and lamp- and LASER-based jammer systems. The simulations of IR missiles in flight include missile seeker hardware mounted on a six degree-of-freedom flight simulation table. This paper will focus on recent developments and upgrades to the AFEWES IR capability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A dynamic infrared scene projector based on IR luminescent devices has many potential advantages compared with existing systems based on micro-resistor arrays. These include very fast response times, as individual devices can be driven at frequencies greater than 1 MHz, and no need for cryogenic cooling. Additionally, luminescent sources can not only appear hot to an IR observer when in forward bias, but also appear cold in reverse bias (commonly referred to as negative luminescence), so that a large apparent temperature range around ambient can be simulated. For a scene projector a large array of photodiodes is required, where each photodiode can be biased individually. As a precursor to the manufacture of a scene projector, we have already fabricated large area MW devices, consisting of arrays of photodiodes, suitable for use as calibration sources in IR cameras. To reduce the currents needed to achieve maximum dynamic temperature range, we have used a novel micromachining technique to fabricate integrated optical concentrators in InSb/InAlSb devices. We present here recent results from a large area (~0.86cm2) medium wavelength (MW) device, consisting of an array of photodiodes each with an integrated optical concentrator. The reverse saturation current of the device was measured to be ~2.3A/cm2, which is significantly smaller than the value of ~9A/cm2 reported previously for similar devices without optical concentrators. The device also displays a large apparent temperature range in line with device modelling. Finally, we will discuss the perspectives on using similar devices for dynamic infrared scene projection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The complexity and functionality of high fidelity infrared (IR) aircraft models has increased significantly with each generation. This increase has caused greater stress on scene generation systems to render images at the required HITL frame rates especially for the older systems. The simplest and most cost effective solution is to optimize the rendering software, in this case Real Time CHAMP (RTC). The software modifications fell into four categories: culling to avoid IR calculation on non displayed facets and removing them from the graphics flow; using optimized graphic operations where possible; moving redundant CPU operations into the graphics pipe; and changing coordinate systems to minimize the number of point and vector transformations required. As a result, the rendering rate was doubled for complex multi-plume aircraft models. The increased performance was verified on Intel PC and SGI Onyx2 hardware platforms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Hardware-in-the-loop testing has, for many years, been an integral part of the modeling and simulation efforts at the U.S. Army Aviation and Missile Command's (AMCOM) Aviation and Missile Research, Engineering, and Development Center (AMRDEC). AMCOM's history includes the development, characterization, and implementation of several unique technologies for the creation of synthetic environments in the visible and infrared regions and AMCOM has
continued significant efforts in these areas. Recently, AMCOM has been testing and characterizing a new state-of-the-art resistor array projector and advanced flight motion simulator (FMS). This paper describes recent test and integration activities of the Honeywell BRITE II emitter array and its integration into an infrared scene projector (IRSP) compatible with a new Carco Flight Motion Simulator (FMS).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The concept for a new high spatial resolution, high-temperature, Dynamic Infrared Scene Projector (DISP) for generating high-speed (microsecond range) broadband (3-16 microns) IR scenery through visible pumping of DISP semiconductor scene (visible-to-infrared conversion) was developed, fabricated and tested. The principle of this new device operation and the results of our initial experimental study are reported for the first time. Key potential operating parameters of the new device prototype (based on a Germanium screen) are compared to that of modern conventional DISP engine (SBIR Emitter Array Projector).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present further progress in high-resolution time-resolved thermal imaging of electronic and optoelectronic devices. We show that concurrent multi-spectral mapping of light, emissivity, and heat patterns a single device produces may hold the key of the device performance improvement by visualizing current carrier distribution and heat flows. To demonstrate advantage of this approach, thermal heaters, light emitting devices, and Peltier coolers are tested with emphasis laid on uniformity of carrier distribution and thermal control.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.