2 October 2003 Assessing blood vessel abnormality via extracting scattering coefficients from OCT images
Author Affiliations +
Abstract
Background: Coronary artery disease (CAD) is the leading cause of mortality and morbidity in the industrialized world. Optical coherence tomography (OCT) is a high-resolution intravascular imaging technology with a potential for in vivo plaque characterization. Although structural remodeling of the arterial vessel wall during plaque development can change tissue optical scattering properties, very limited evidence is available on the exact optical scattering properties of plaques. The scattering coefficient, μs, and the anisotropy factor, g, can be derived from OCT images by fitting a theoretical model to individual depth-scans. The aim of the current study was to use this method to examine by OCT the scattering properties of human arteries with different stages of atherosclerotic lesion development. Methods: Normal (n=4), lipid-rich (n=4), and fibrous (n=3) aortic blocks as classified by parallel histopathologic examination were obtained within 24 hours of death and imaged by OCT. The intima was located in the OCT images, and then further split into 115 blocks (41 normal, 40 lipid-rich, and 34 fibrous) of adjacent OCT depth-scans transversely spanning ~200-300 μm. Scattering signals from each block were averaged and fit to the theoretical model. From these fittings, μs and g were extracted. Results and Discussion: The optical scattering properties of normal aortic intima were quite different from lipid-rich and fibrous lesions, respectively. We discovered that the normal intima was generally highly forward scattering, i.e., with 0.917-1, whereas lipid-rich blocks had μs<15mm-1. Fibrous blocks displayed large variations in μs, reflecting a histopathology with varying amounts of collagen, lipids, and elastin. Based on our findings, we defined a criteria of μs and g for normal intimas, using the above values of μs and g as cutoffs. Our "normal" criteria demonstrated high sensitivity (92.4%) and specificity (82.4%). We conclude, that a detailed analysis of the tissue optical scattering properties can enhance the capacity of OCT to provide information about vascular pathology.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
David Levitz, David Levitz, Claus B Andersen, Claus B Andersen, Michael H. Frosz, Michael H. Frosz, Lars Thrane, Lars Thrane, Peter R Hansen, Peter R Hansen, Thomas M Jorgensen, Thomas M Jorgensen, Peter E. Andersen, Peter E. Andersen, } "Assessing blood vessel abnormality via extracting scattering coefficients from OCT images", Proc. SPIE 5140, Optical Coherence Tomography and Coherence Techniques, (2 October 2003); doi: 10.1117/12.500727; https://doi.org/10.1117/12.500727
PROCEEDINGS
8 PAGES


SHARE
Back to Top