Paper
28 May 2003 Accuracy vs. complexity: OPC solutions and tradeoffs
Author Affiliations +
Proceedings Volume 5148, 19th European Conference on Mask Technology for Integrated Circuits and Microcomponents; (2003) https://doi.org/10.1117/12.514949
Event: 19th European Conference on Mask Technology for Integrated Circuits and Microcomponents, 2003, Sonthofen, Germany
Abstract
Evolution of Optical Proximity Correction (OPC) methodology with the continuing shrink of feature size indicates a gradual shift towards increasingly more complex solutions, i.e., from rule based to model based OPC. The key underlying reason is to provide adequate accuracy ofpattern reproduction despite the growing sub-wavelength gap, i.e., the difference between minimum feature size and the wavelength used to print it [1 ]. However, full chip implementation of these complex solutions would increase CAD flow/mask generation runtimes and database file sizes, therefore compromising reticle manufacturability. In order to select optimal OPC routines based on feedback from process, CAD, design, and mask engineering, we proposed a methodology and investigated tradeoffs between correction accuracy and database complexity. Rule-based OPC, i.e., corrections defined by a set ofwidth and spacing proximity rules rely on a limited set oftest geometries and can't be made sensitive to the environment ofthe feature. In contrast, model based OPC features are generated for the actual layout environment and can be changed depending on the adopted photolithography process. Another degree of freedom is provided by the rule or model calibration. We defined and discussed complexity and accuracy criteria such as the size ofthe database and the number of silicon imaging errors.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Bartosz Banachowicz, Walter Iandolo, Artur P. Balasinski, Wolfgang Staud, Melody W. Ma, and Jason Sweis "Accuracy vs. complexity: OPC solutions and tradeoffs", Proc. SPIE 5148, 19th European Conference on Mask Technology for Integrated Circuits and Microcomponents, (28 May 2003); https://doi.org/10.1117/12.514949
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical proximity correction

Silicon

Databases

Calibration

Computer aided design

Data modeling

Model-based design

Back to Top