Translator Disclaimer
10 November 2003 Detector stability of the Terra MODIS thermal emissive bands
Author Affiliations +
The MODerate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments for the NASA’s Earth Observing System (EOS). The MODIS ProtoFlight Model (PFM) was launched on-board the EOS Terra spacecraft on December 18, 1999. The science data acquisition started on February 24, 2000. Since then it has been providing the science community and public users unprecedented amount of data sets for the global monitoring of the Earth’s land, oceans, and atmosphere. MODIS has 36 spectral bands with wavelengths ranging from 0.41 micrometer to 14.5 micrometers. Its 16 thermal emissive bands (TEB) range from 3.7 to 14.2 micrometers and have a total of 160 individual detectors (10 detectors per band). The thermal emissive bands are calibrated on-orbit by an on-board calibrator blackbody (OBC BB) on a scan by scan basis. The detectors responses to the BB source track their operational stability and therefore their noise characteristics as well. In this paper, we provide a brief review of the MODIS TEB on-orbit calibration algorithm with a focus on detector stability using over three years of on-orbit calibration data sets. The on-orbit changes in detectors responses from one operational configuration to another, the changes within the same operational condition, and the impact of these changes on the calibration and on the Earth scene observations are carefully examined. Except for a few detectors that were identified from pre-launch or became noisy on-orbit, the overall performance of MODIS TEB detectors is very satisfactory according to the design specifications.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Xiaoxiong Xiong, Kwo-Fu Chiang, Na Chen, S. Xiong, Aisheng Wu, Farida Adimi, and William L. Barnes "Detector stability of the Terra MODIS thermal emissive bands", Proc. SPIE 5151, Earth Observing Systems VIII, (10 November 2003); doi: 10.1117/12.504827;

Back to Top